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The biosynthesis of caulerpenyne 1 was studied in the invasive green alga Caulerpa taxifolia. The investigation was performed on intact algae
with stable-isotope-labeled precursors administered under mixotrophic growth conditions. According to the labeling pattern, after incorporation
of 1-1%C-acetate and 13CO,, respectively, the biosynthesis of the sesquiterpene backbone occurs in the chloroplast and follows the methyl-
erythritol-4-phosphate (MEP) pathway. In contrast, the acetyl residues of caulerpenyne 1 are derived from a cytosolic resource.

The invasive tropical green algaaulerpa taxifoliaspread metabolite ofC. taxifoliaand can account for more than 1.3%
rapidly after its accidental introduction into the Mediterranean of the wet weight of the algaUntil now, nothing was known
and was recently also detected on the North American Pacificabout the biosynthesis of this dominant sesquiterpene.
coast!? By outcompeting the natural flora it causes massive  Since the discovery of the coexistence of two different
alterations of the ecosystem, densely covering large areagpathways towards isoprenoids, numerous studies have ad-
of the coastal regionsintroducedC. taxifoliareduces the  dressed the metabolic source of the central intermediate
species diversity and also threatens fishery yields in the isopentenyl-pyrophosphate in different organisrid¢ge have
regions of introductio:* The alga’s success is attributed to  now a broad knowledge about the distribution of the mevalo-
its high temperature and substrate tolerance but also tonate (MVA) and methyl-erythritol-4-phosphat (MEP)
efficient chemical defenseThis is assumed to be based pathway in different phyla, but few studies have addressed
mainly on the sesquiterpene caulerpenyme caulerpenyne-  the origin of terpenes in marine macroalgae. This is partly
derived degradation products released after wounding ofdue to the difficulties arising out of the morphology of
Caulerpale$.” Caulerpenynel is the major secondary macroalgae. In contrast to vascular higher plants, where
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secondary metabolites have focused on the investigation offj N NG

cell-free preparation¥,suspension culturéor reproductive
cells that have not yet developed a tough cell WallThe
siphonous green alg@. taxifolia represents an exception

among the generally autotrophic macroalgae as it has been

demonstrated with radioactive tracers that it is capable of
taking up organic precursors from the aqueous environfdent.
We show that this property can be exploited to investigate
the biosynthesis of secondary metabolites in int&ct
taxifolia. The incorporation of stable-isotope-labeled precur-
sors into caulerpenyrkwith a significant degree of labeling
made it possible to deduce the early steps of isoprenoid
biosynthesis in this alga and to identify cellular resources
for the acetyl moieties of the metabolite.

For incorporation of 1°C-acetate, a unialg#t. taxifolia
isolate kept in artificial seawater was used. Experiments
supplying externally labeled precursors under normal growth
condition$ failed even with DMSO-pretreated algae, as did
microinjection experiments of labeled metabolites. Because
mixotrophic uptake was reported mainly under low light
conditions over the rhizoids (filamentous, unpigmented
structures of the algd¥ these were enclosed in plastic tubes
filled with a 1 mg mL? solution of 113C-acetate in sea-
water. Enclosure of rhizoids proved beneficial because it

Scheme 1. Biosynthesis and Labeling Pattern of Caulerpenyne
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reduced the amount of labeled precursor needed and didwas verified with GG-MS. High incorporation rates of

not promote bacterial growth due to exposure of the entire 13CO, were observed. Besides the signals from unlabeled
algae to increased nutrient levels in the growth medium. caulerpenynd, presumably generated before the administra-
Algae with treated rhizoids were put into aerated aquaria tion of 3CO,, clusters of ions corresponding to labeled
and grown under a 1 h/23 h light/dark regime for 1 week caulerpenynd can be detected in the mass spectrum (Figure
before workup. 1). The characteristic fragmentation pattern of caulerpenyne
Caulerpenyne isolation and purification followed an 1 made it possible to assign the incorporation rates for both
established procedurg,and incorporation of label was the terpene backbone and the acetyl residues separately.
monitored by**C NMR in comparison with an unlabeled Caulerpenyne (M= 374) loses the three acetyl groups under
standard. Significant label incorporation was found only for EI conditions to form a gH;¢O fragment ion am/z= 212
the C1l-carbon atoms of the acetyl residues of caulerpenynecorresponding to the monooxygenated sesquiterpené®unit.
(1), and no enrichment dfC signals was observed in the In the labeled sample a cluster of additional ions can be
terpene backbone (Scheme'4)This proves clearly that observed between masses 223 and 228. This arises from the
labeled acetate was taken up by the macrophyte andterpene backbone of caulerpenyheroduced during the
incorporated into caulerpenyideThe precursor nevertheless incubation with*C0O,. Modeling of the mass spectra made
did not serve as a building block in the terpene biosynthesisit possible to deduce an incorporation of 88% 0O, (only
as would have been expected for metabolites produced viathe degree of labeling for caulerpenyne that was generated
the MVA pathway? Since incorporation of later intermediates  after treatment witA3CO, was calculated for the evaluation
of the respective pathways to terpenes failed presumably asof the incorporation success) (Figure 1). This value was also
a result of extensive bacterial metabolism in the growth found for other fragment ions from the terpene backbone of
medium, the uptake dfCO, was monitored to get further 1. It can be clearly deduced from theHGO fragment that
insight into the biosynthesis of caulerpenyheFragments  stems from the acetate units of caulerper§nieat 13CO,
of C. taxifoliawere transferred into fresh medium, saturated was significantly less incorporated into acetate compared to
with 13CO,. After 7 days under standard growth conditions the terpene moiety of caulerpenyne (76%#€) (Figure
the algae were worked up, and the incorporation of label 1).1¢ This preferential incorporation of G@s carbon source
into terpenes is indicative for the biosynthesis via the MEP
pathway’ and confirms the finding after administration of
labeled acetate. According to the general model the MEP-
dependent biosynthesis occurs in the chloroplasts whege CO
is fixed by photosynthesis (Scheme 1). In contrast to the
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Figure 1. (Left) Mass spectra of unlabeled (top) and labeled caulerpetyewtracted after treatment of the alga wiitO, (below).

(Right) Regions of the mass spectra corresponding to agefyl= 43) and terpenenf/z= 212) fragments (top). Modeled mass spéétra
for C,H30 from acetate and gH;60 from the terpene backbone with 76% and 88% incorporation, respectively (below; incorporation
refers to the labeled cluster only; unlabeled signals that arise frpnesent beforé3CO, treatment are not included in the calculation).

biosynthesis of the terpene moietylpfour findings indicate ~ terpene backbone of caulerpenyhim the green macroalga
that acetate from caulerpenyfés cytosol-derived, since it  C. taxifolia but that subsequently resources from different
shows lower degree of labeling afftéCO, treatment butis  cellular locations are used for the introduction of acetyl
labeled when externally applietfC-acetate is taken up. functionalities into caulerpenyn& To our knowledge, the
Accordingly, biosynthesis of caulerpenyne requires isopen- methods applied here allowed for the first time the investiga-
tenyl-pyrophosphat8 or farnesyl-pyrophosphat synthe- tion of the biosynthesis of macroalgal secondary metabolites
sized in the chloroplast, whereas the introduction of acetyl in intact adult organisms using stable isotope incorporation.
groups as further tailoring reactions relies on cytoplasm-
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